Combinatorial targeting of ribbon–helix–helix artificial transcription factors to chimeric recognition sites

نویسندگان

  • Massimiliano Zampini
  • Finbarr Hayes
چکیده

Artificial transcription factors (ATFs) are potent synthetic biology tools for modulating endogenous gene expression and precision genome editing. The ribbon-helix-helix (RHH) superfamily of transcription factors are widespread in bacteria and archaea. The principal DNA binding determinant in this family comprises a two-stranded antiparallel β-sheet (ribbons) in which a pair of eight-residue motifs insert into the major groove. Here, we demonstrate that ribbons of divergent RHH proteins are compact and portable elements that can be grafted into a common α-helical scaffold producing active ATFs. Hybrid proteins cooperatively recognize DNA sites possessing core tetramer boxes whose functional spacing is dictated by interactions between the α-helical backbones. These interactions also promote combinatorial binding of chimeras with different transplanted ribbons, but identical backbones, to synthetic sites bearing cognate boxes for each protein either in vitro or in vivo. The composite assembly of interacting hybrid proteins offers potential advantages associated with combinatorial approaches to DNA recognition compared with ATFs that involve binding of a single protein. Moreover, the new class of RHH ATFs may be utilized to re-engineer transcriptional circuits, or may be enhanced with affinity tags, fluorescent moieties or other elements for targeted genome marking and manipulation in bacteria and archaea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA

A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...

متن کامل

NikR is a ribbon-helix-helix DNA-binding protein.

Escherichia coli NikR, a repressor with homologs in other bacteria and archaea, was identified as a potential new member of the ribbon-helix-helix (beta-alpha-alpha) family of transcription factors in profile based sequence searches and in structure prediction experiments. Biophysical and biochemical characterization of the N-terminal domain of NikR show that it has many features expected of a ...

متن کامل

Different DNA contact schemes are used by two winged helix proteins to recognize a DNA binding sequence.

The hepatocyte nuclear factor 3 (HNF-3)/fork head (fkh) family contains a large number of transcription factors which recognize divergent DNA sequences via a winged-helix binding motif. In this report we present studies on the DNA binding properties of winged-helix HNF-3/fkh homologues 1 (HFH-1) and 2 (HFH-2) which recognize a shared DNA binding site with different affinities. To explore how HF...

متن کامل

Analysis of hepatocyte nuclear factor-3 beta protein domains required for transcriptional activation and nuclear targeting.

Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (alpha, beta and gamma) regulate transcription of the transthyretin (TTR) and numerous other liver-specific genes. The HNF-3 proteins bind DNA via a homologous winged helix motif common to a number of developmental regulatory proteins including the Drosophila homeotic fork head (fkh) protein. The mammalian HNF-3/fkh family consists of ...

متن کامل

Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming

Pioneer transcription factors (TFs) access silent chromatin and initiate cell-fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein, we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012